
Introduction to C
Memory Model

Instructor: Yin Lou

02/04/2011

Introduction to C CS 2022, Spring 2011, Lecture 6

Recap: Pointers

I int *ptr;

I Pointers are variables that store memory address of other
variables

I Type of variable pointed to depends on type of pointer:

I int *ptr points to an integer value
I char *ptr points to character variable
I Can cast between pointer types: myIntPtr = (int *)

myOtherPtr;
I void *ptr has an unspecified type (generic pointer); must be

cast to a type before used

Introduction to C CS 2022, Spring 2011, Lecture 6

Recap: Pointers

I int *ptr;

I Pointers are variables that store memory address of other
variables

I Type of variable pointed to depends on type of pointer:
I int *ptr points to an integer value
I char *ptr points to character variable

I Can cast between pointer types: myIntPtr = (int *)
myOtherPtr;

I void *ptr has an unspecified type (generic pointer); must be
cast to a type before used

Introduction to C CS 2022, Spring 2011, Lecture 6

Recap: Pointers

I int *ptr;

I Pointers are variables that store memory address of other
variables

I Type of variable pointed to depends on type of pointer:
I int *ptr points to an integer value
I char *ptr points to character variable
I Can cast between pointer types: myIntPtr = (int *)

myOtherPtr;

I void *ptr has an unspecified type (generic pointer); must be
cast to a type before used

Introduction to C CS 2022, Spring 2011, Lecture 6

Recap: Pointers

I int *ptr;

I Pointers are variables that store memory address of other
variables

I Type of variable pointed to depends on type of pointer:
I int *ptr points to an integer value
I char *ptr points to character variable
I Can cast between pointer types: myIntPtr = (int *)

myOtherPtr;
I void *ptr has an unspecified type (generic pointer); must be

cast to a type before used

Introduction to C CS 2022, Spring 2011, Lecture 6

Recap: Pointers

I Two main operations
I * dereference: get the value at the memory location stored in

a pointer
I & address of: get the address of a variable
I int *myPtr = &myVar;

I Pointer arithmetic: directly manipulate a pointer’s content to
access other locations

I Use with caution!: can access bad areas of memory and
cause a crash

I However, it is useful in accessing and manipulating data
structures

I Can have pointers to pointers
I int **my2dArray;

Introduction to C CS 2022, Spring 2011, Lecture 6

Memory

I Program code
I Function variables

I Arguments
I Local variables
I Return location

I Global Variables
I Statically allocated
I Dynamically allocated

Introduction to C CS 2022, Spring 2011, Lecture 6

The Stack

Stores

I Function local variables

I Temporary variables

I Arguments for next function call

I Where to return when function ends

Introduction to C CS 2022, Spring 2011, Lecture 6

The Stack

Managed by compiler

I One stack frame each time function called

I Created when function called

I Stacked on top (under) one another

I Destroyed at function exit

Introduction to C CS 2022, Spring 2011, Lecture 6

What Can Go Wrong?

char *my_strcat(char *s1, char *s2)

{

char s3[1024];

strcpy(s3, s1);

strcat(s3, s2);

return s3;

}

I Recall that local variables are stored on the stack

I Memory for local variables is deallocated when function
returns

I Returning a pointer to a local variable is almost always a bug!

Introduction to C CS 2022, Spring 2011, Lecture 6

What Can Go Wrong?

char *my_strcat(char *s1, char *s2)

{

char s3[1024];

strcpy(s3, s1);

strcat(s3, s2);

return s3;

}

I Recall that local variables are stored on the stack

I Memory for local variables is deallocated when function
returns

I Returning a pointer to a local variable is almost always a bug!

Introduction to C CS 2022, Spring 2011, Lecture 6

What Can Go Wrong?

I Run out of stack space
I Unintentionally change values on the stack

I In some other function’s frame
I Even return address from function

I Access memory even after frame is deallocated

Introduction to C CS 2022, Spring 2011, Lecture 6

The Heap

I C can use space in another part of memory: the heap

I The heap is separate from the execution stack
I Heap regions are not deallocated when a function returns
I Note: this is completely unrelated to the Heap data structure

I The programmer requests storage space on the heap
I C never puts variables on the heap automatically
I But local variables might point to locations on the heap
I Heap space must be explicitly allocated and deallocated by the

programmer

Introduction to C CS 2022, Spring 2011, Lecture 6

The Heap

I C can use space in another part of memory: the heap
I The heap is separate from the execution stack
I Heap regions are not deallocated when a function returns
I Note: this is completely unrelated to the Heap data structure

I The programmer requests storage space on the heap
I C never puts variables on the heap automatically
I But local variables might point to locations on the heap
I Heap space must be explicitly allocated and deallocated by the

programmer

Introduction to C CS 2022, Spring 2011, Lecture 6

The Heap

I C can use space in another part of memory: the heap
I The heap is separate from the execution stack
I Heap regions are not deallocated when a function returns
I Note: this is completely unrelated to the Heap data structure

I The programmer requests storage space on the heap
I C never puts variables on the heap automatically
I But local variables might point to locations on the heap
I Heap space must be explicitly allocated and deallocated by the

programmer

Introduction to C CS 2022, Spring 2011, Lecture 6

malloc

I Library function in stdlib.h
I Stands for memory allocate

I Requests a memory region of a specified size
I Syntax: void *malloc(int size)
I void * is generic pointer type

Introduction to C CS 2022, Spring 2011, Lecture 6

malloc

I Library function in stdlib.h
I Stands for memory allocate

I Requests a memory region of a specified size
I Syntax: void *malloc(int size)
I void * is generic pointer type

Introduction to C CS 2022, Spring 2011, Lecture 6

Usage

int main()

{

int *p = (int *) malloc(10 * sizeof(int));

if (p == NULL)

{

// do cleanup

}

// do something

free(p);

return 0;

}

I MUST check the return value from malloc

I MUST explicitly free memory when no longer in use

Introduction to C CS 2022, Spring 2011, Lecture 6

Usage

int main()

{

int *p = (int *) malloc(10 * sizeof(int));

if (p == NULL)

{

// do cleanup

}

// do something

free(p);

return 0;

}

I MUST check the return value from malloc

I MUST explicitly free memory when no longer in use

Introduction to C CS 2022, Spring 2011, Lecture 6

What Can Go Wrong?

I Run out of heap space: malloc returns 0

I Unintentionally change other heap data

I Access memory after free’d

I free memory twice

Introduction to C CS 2022, Spring 2011, Lecture 6

Usage

int main()

{

int *p = (int *) malloc(10 * sizeof(int));

if (p == NULL)

{

// do cleanup

}

// do something

if (p != NULL)

{

free(p);

p = NULL;

}

return 0;

}

Introduction to C CS 2022, Spring 2011, Lecture 6

Garbage Collection in C

I Pointers make garbage collection difficult or impossible
I Its very difficult to determine whether memory is still being

used
I Javas references are a restricted form of pointers that don’t

allow arithmetic, just because of this issue
I There are garbage collecting libraries for C, but they aren’t

guaranteed to work with any program

Example

char *s = (char *) malloc(1024);

s -= 10000;

// nothing points to the allocated memory

// region. Could it be garbage collected?

s += 10000;

// no, because now something points to it again!

Introduction to C CS 2022, Spring 2011, Lecture 6

Garbage Collection in C

I Pointers make garbage collection difficult or impossible
I Its very difficult to determine whether memory is still being

used
I Javas references are a restricted form of pointers that don’t

allow arithmetic, just because of this issue
I There are garbage collecting libraries for C, but they aren’t

guaranteed to work with any program

Example

char *s = (char *) malloc(1024);

s -= 10000;

// nothing points to the allocated memory

// region. Could it be garbage collected?

s += 10000;

// no, because now something points to it again!

Introduction to C CS 2022, Spring 2011, Lecture 6

Multidimensional Arrays

I On the stack: int a[10][20];

I Initialization: int a[][] = {{1, 2, 3}, {4, 5, 6}};

I Accessing the array: a[1][0]

I On the heap

int **a = (int **) malloc(10 * sizeof(int *));

for (int i = 0; i < 10; ++i)

{

a[i] = (int *) malloc(20 * sizeof(int));

}

I Don’t forget to free them!

Introduction to C CS 2022, Spring 2011, Lecture 6

Multidimensional Arrays

I On the stack: int a[10][20];

I Initialization: int a[][] = {{1, 2, 3}, {4, 5, 6}};

I Accessing the array: a[1][0]

I On the heap

int **a = (int **) malloc(10 * sizeof(int *));

for (int i = 0; i < 10; ++i)

{

a[i] = (int *) malloc(20 * sizeof(int));

}

I Don’t forget to free them!

Introduction to C CS 2022, Spring 2011, Lecture 6

