
CHAPTER 6

Shannon entropy

This chapter is a digression in information theory. This is a fascinating
subject, which arose once the notion of information got precise and quantifyable.
From a physical point of view, information theory has nothing to do with physics.
However, the concept of Shanon entropy shares some intuition with Boltzmann’s,
and some of the mathematics developed in information theory turns out to have
relevance in statistical mechanics. This chapter contains very basic material on
information theory.

1. Quantifying information

Computers have popularized the notion of bit, a unit of information that takes
two values, 0 or 1. We introduce the information size H0(A) of a set A as the
number of bits that is necessary to encode each element of A separately, i.e.

H0(A) = log2 |A|. (6.1)

This quantity has a unit, the bit. If we have two sets A and B, then

H0(A×B) = H0(A) + H0(B). (6.2)

This justifies the logarithm. The information size of a set is not necessarily integer.
If we need to encode the elements of A, the number of necessary bits is dH0(A)e
rather than H0(A); but this is irrelevant for the theory.

The ideas above are natural and anybody might have invented the concept of
information size. The next notion, the information gain, is intuitive but needed a
genius to define and quantify it.

Suppose you need to uncover a certain English word of five letters. You manage
to obtain one letter, namely an e. This is useful information, but the letter e is
common in English, so this provides little information. If, on the other hand, the
letter that you discover is j (the least common in English), the search has been
more narrowed and you have obtained more information. The information gain
quantifies this heuristics.

We need to introduce a relevant formalism. Let A = (A, p) be a discrete
probability space. That is, A = {a1, . . . , an} is a finite set, and each element has
probability pi. (The σ-algebra is the set of all subsets of A.) The information gain
G(B|A) measures the gain obtained by the knowledge that the outcome belongs to
the set B ⊂ A. We denote p(B) =

∑
i∈B pi.

Definition 6.1. The information gain is

G(B|A) = log2

1
p(B)

= − log2 p(B).
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52 6. SHANNON ENTROPY

The information gain is positive, and it satisfies the following additivity prop-
erty. Let B ⊂ C ⊂ A. The gain for knowing that the outcome is in C is
G(C|A) = − log2 p(C). The gain for knowing that it is in B, after knowing that it
is in C, is

G(B|C) = − log2 p(B|C) = − log
p(B)
p(C)

. (6.3)

It follows that G(B|A) = G(C|A) + G(B|C), as it should be.
The unit for the information gain is the bit. We gain 1 bit if p(B) = 1

2 .

2. Shannon entropy

It is named after Shannon1, although its origin goes back to Pauli and von
Neumann.

Definition 6.2. The Shannon entropy of A is

H(A) = −
n∑

i=1

pi log2 pi.

The extension to continuum probability spaces is not straightforward and we
do not discuss it here.

Proposition 6.1. H(A) 6 log2 n, with equality iff p(ai) = 1/n for all i.

Proof. Since − log2 is convex, we have from Jensen’s inequality

− log2

( n∑
i=1

1
pi

pi︸ ︷︷ ︸
n

)
6

n∑
i=1

(
− log2

1
pi

)
pi = −H(A). (6.4)

Since − log2 is strictly convex, the inequality above is strict unless p1 = · · · =
pn. �

Proposition 6.2. H is strictly concave with respect to p. That is, writing
H(p) instead of H(A = (A, p)), we have

H(αp(1) + (1− α)p(2)) > αH(p(1)) + (1− α)H(p(2)).

Proof. The space of probabilities on A is the convex set

P = {(p1, . . . , pn) : 0 6 pi 6 1,
∑

pi = 1}. (6.5)

(It is actually a simplex.) Given p in the interior of P , let q = (q1, . . . , qn) such that∑
qi = 0, and such that p + λq ∈ P provided λ is a number small enough. Then

H(p + λq) = −
n∑

i=1

(pi + λqi) log2(pi + λqi). (6.6)

The derivatives with respect to λ are

dH

dλ
= −

n∑
i=1

qi log2(pi + λqi),
d2H

dλ2
= − 1

log 2

n∑
i=1

q2
i

p1 + λqi
. (6.7)

The latter is strictly negative. �

1The American Claude Shannon (1916–2001) wrote A mathematical theory of communication
in 1948, an article that created information theory.
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Definition 6.3. The relative entropy of the probability p with respect to the
probability q is

H(p|q) =
n∑

i=1

pi log2

pi

qi
.

The definition is not symmetric under exchanges of p and q, H(p|q) 6= H(q|p)
unless p = q.

Proposition 6.3.
H(p|q) > 0,

with equality iff p = q.

Proof. By Jensen,

H(p|q) = −
∑

i

pi log2

qi

pi
> − log2

(∑
i

pi
qi

pi

)
= 0. (6.8)

�

3. Relation with Boltzmann entropy

Statistical mechanics provides three probability measures on the phase space,
the microcanonical, canonical, and grand-canonical measures. We now study the
Shannon entropy of these measures; as it turns, it coincides with the thermodynamic
entropy. For simplicity we consider the Ising model in the lattice gas interpretation,
but the present discussion is clearly more general. Recall that the domain D ⊂ Zd

is discrete, and that the state space is Ω = {0, 1}D. The Hamiltonian Ω → R
involves a sum over nearest neighbours.

Microcanonical ensemble. The probability is uniform over all states with
energy U and number of particles N :

pmicro(ω) =

{
1

X(U,D,N) if H(ω) = U and N(ω) = N,

0 otherwise.

Then H(pmicro) = log2 X(U,D,N) = 1
kB log 2S(U,D,N).

Canonical ensemble. We now have the Gibbs factor.

pcan(ω) =

{
e−βH(ω)

Y (β,D,N) if N(ω) = N,

0 otherwise.

One easily obtains

H(pcan) =
1

log 2
[
β〈H(ω)〉+ log Y (β, D, N)

]
.

The average of the Hamiltonian is equal to the thermodynamic energy U(β, D,N).
The logarithm of Y is equal to −βF (β, D, N). Recall that the free energy is related
to the energy and the entropy by U = F − TS. With β = 1/kBT , we see that
H(pcan) = 1

kB log 2S(β, D, N).
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Grand-canonical ensemble. The probability pgd−can involves now the chem-
ical potential. As is checked in the exercises, we have H(pgd−can) = 1

kB log 2S(β, D, µ).

A thorough rigorous discussion of the relations between Shannon and thermo-
dynamic entropies, and of the theory of large deviations can be found in [Pfister,
2002]2

4. Shannon theorem

A basic problem in information theory deals with encoding large quantities of
information. We start with a finite set A, that can denote the 26 letters from the
Latin alphabet, or the 128 ASCII symbols, or a larger set of words. We consider a
file that contains N |A| symbols with N large. How many bits are required so that
the file can be encoded without loss of information? The answer is given by the
information size, H0(AN ) = NH0(A).

The question becomes more interesting, and the answer more surprising, if we
allow an error δ. We now seek to encode only files that fall in a set B ⊂ A, such
that p(B) > 1− δ. If a file turns out to be in A \B, then we lose the information.
The information size is given by Hδ(A), where

Hδ(A) = inf
B⊂A

p(B)>1−δ

log2 |B|. (6.9)

Notice that limδ→0 Hδ(A) = H0(A).
The occurrence of probabilities may be confusing, so a discussion is needed. In

the real world, information is selected for a purpose and its content is well-chosen.
But we modelize the problem of information transmission using probabilities; the
process can be described as follows. A string of N characters is selected at random
using some probability. One wants to encode this string, to send it (or to store it),
and to decode it. We assume that no error is committed during these operations,
except that the string may lie outside the set of codable strings. This modelization
is behind all compression algorithms. Strange as it may seem, an MP3 file of Manon
Lescaut has been compressed as if the music was the the result of random composing
by Puccini, random performing by the orchestra, and random singing by the soli!

So we want to say something about Hδ(AN ) (the probability of (a1, . . . , aN ) ∈
AN is

∏
p(ai), i.e. we assume independence). Notice that Hδ(A) 6 H0(A), and also

that H(A) 6 H0(A), with equality iff elements of A come with equal probability.
We have H0(AN ) = NH0(A), but Hδ(AN ) is smaller than NHδ(A) in general.

Theorem I (Shannon source coding theorem). For any δ > 0,

lim
N→∞

1
N

Hδ(AN ) = H(A).

The theorem says that if we allow for a tiny error, and if our message is large
(depending on the error), the number of required bits is roughly NH(A). Notice
that the limit in the theorem is a true limit, not a lim inf or a lim sup. Thus
Shannon entropy gives the optimal compression rate, that can be approached but
not improved.

2Ch.-É. Pfister, Thermodynamical aspects of classical lattice systems, in In and out of equi-
librium: Physics with a probability flavor, Progr. Probab. 51, Birkhäuser (2002)
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Proof. It is based on the (weak) law of large numbers. Consider the random
variable − log2 p(a). The law of large numbers states that, for any ε > 0,

lim
N→∞

Prob
({

(a1, . . . , aN ) :
∣∣∣− 1

N

N∑
i=1

log2 p(ai)︸ ︷︷ ︸
− 1

N log2 p(a1,...,aN )

−E
(
− log2 p(a)

)︸ ︷︷ ︸
H(A)

∣∣∣ > ε
})

= 0.

(6.10)
There exists therefore a set AN,ε ⊂ AN such that limN p(AN,ε) = 1, and such that
any (a1, . . . , aN ) ∈ AN,ε satisfies

2−N(H(A)+ε) 6 p(a1, . . . , aN ) 6 2−N(H(A)−ε). (6.11)

The number of elements of AN,ε is easily estimated:

1 > p(AN,ε) > |AN,ε| 2−N(H(A)+ε), (6.12)

so that |AN,ε| 6 2N(H(A)+ε). For any δ > 0, we can choose N large enough so that
p(AN,ε) > 1− δ. Then

Hδ(AN ) 6 log2 |AN,ε| 6 N(H(A) + ε). (6.13)

It follows that

lim sup
N→∞

1
N

Hδ(AN ) 6 H(A). (6.14)

For the lower bound, let BN,δ be the minimizer for Hδ; that is, p(BN,δ) > 1−δ,
and

Hδ(AN ) = log2 |BN,δ| > log2

∣∣BN,δ ∩AN,ε

∣∣. (6.15)

We need a lower bound for the latter term.

1− δ 6 p
(
BN,δ ∩AN,ε

)︸ ︷︷ ︸
6|BN,δ∩AN,ε|2−N(H(A)−ε)

+ p
(
BN,δ ∩Ac

N,ε

)︸ ︷︷ ︸
6δ if N large

. (6.16)

Then ∣∣BN,δ ∩AN,ε

∣∣ > (1− 2δ) 2N(H(A)−ε). (6.17)

We obtain
1
N

Hδ(AN ) >
1
N

log2(1− 2δ) + H(A)− ε. (6.18)

This gives the desired bound for the lim inf, and Shannon’s theorem follows. �

It is instructive to quantify the ε’s and δ’s of the proof. Invoking the central
limit theorem instead of the law of large numbers, we get that

p(AN,ε) ≈ 2σ2

∫ ∞

√
Nε

e−
1
2 t2 dt ≈ e−Nε2

≈ δ.

(σ2 is the variance of the random variable − log2 p(a).) This shows that ε ≈ N− 1
2

and δ ≈ e−N . It is surprising that δ can be so tiny, and yet makes such a difference!
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5. Codes and compression algorithms

A code is a mapping from a “string” (a finite sequence of letters) to a finite
sequence of binary numbers. The coding of a string is sequential, i.e. letters are
coded one by one, independently of one another. We need some notation. A binary
sequence, or sequence of bits, is written b = b1b2 . . . bm, where each bi = 0, 1. The
concatenation of two binary sequences b and b′, of respective lengths m and n, is
the sequence

bb′ = b1 . . . bmb′1 . . . b′n.

Of course, the length of bb′ is m+n. Let B be the set of all finite binary sequences,
of arbitrary length. We want to encode a string (a1, . . . , an) of elements of an
“alphabet” A.

Definition 6.4. A code is a map c from ∪N>1A
N to B, which satisfies the

following sequential property:

c(a1, . . . , an) = c(a1) . . . c(an).

A code is uniquely decodable if the mapping is injective (one-to-one).

Some codes map any letter a ∈ A to a binary sequence with fixed length. For
instance, ASCII characters use 7 bits for any letter. But compression algorithms
use variable length codes. A special class of variable length codes are prefix codes.
These are uniquely decodable codes where a sequence of binary numbers can be
decoded sequentially. That is, one reads the binary numbers from the left, one by
one, until one recognizes the code of a letter. One extracts the letter, and reads
the next binary numbers until the next letter is identified. These notions are best
understood with the help of examples.

Let A = {a1, a2, a3, a4}. The code c(1) is undecodable; c(2) is uniquely decod-
able but is not a prefix code; and c(3) and c(4) are prefix codes.

c(1) : a1 7→ 0 c(2) : a1 7→ 0 c(3) : a1 7→ 00 c(4) : a1 7→ 0
a2 7→ 1 a2 7→ 01 a2 7→ 01 a2 7→ 10
a3 7→ 00 a3 7→ 011 a3 7→ 10 a3 7→ 110
a4 7→ 11 a4 7→ 0111 a4 7→ 11 a4 7→ 111

Any fixed length, uniquely decodable code is also prefix. Prefix codes can be
represented by trees, see Fig. 6.1.
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Figure 6.1. Tree representations for the prefix codes c(3) and c(4).
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The goal of compression algorithms3 is to encode strings with the smallest
sequence of binary numbers. For a ∈ A, let `(a) be the length of the sequence c(a).
If each letter a occurs with (independent) probability p(a), the expectation for the
length of one letter is

L(A, c) =
∑
a∈A

p(a)`(a). (6.19)

Thus the goal is to find the code that minimizes E(`). It is instructive to consider
the following two situations with A = {a1, a2, a3, a4}, and the two prefix codes
above.

(1) If p1 = p2 = p3 = p4 = 1
4 , the expected length for c(3) is 2 bits, and for

c(4) it is 2.25 bits. The first code is better. Notice that H(A) = 2 bits.
(2) If p1 = 1

2 , p2 = 1
4 , p3 = p4 = 1

8 , the expected length for c(3) is still 2 bits,
but it is now 1.75 bits for c(4). The second code is better. Notice that
H(A) = 1.75 bits.

As we will see, the codes are optimal for these two situations.
The idea is that frequent letters should be coded with smaller length. This clearly

comes at the expense of other letters, that will need longer strings in order for the
code to be decodable. There is a bound on minimally achievable lengths, that does
not involve probabilities. It is known as Kraft inequality.

Proposition 6.4 (Kraft inequality).
• Any one-to-one code on A satisfies∑

a∈A

2−`(a) 6 1.

• Given {`(a) : a ∈ A} satisfying the inequality above, there corresponds a
prefix code.

Proof. We need to prove the first statement for any decodable code, not
necessarily a prefix code. We start with(∑

a∈A

2−`(a)
)N

=
∑

a1,...,aN

2−`(a1)−...−`(aN )

=
N`max∑

L=N`min

2−L#
{
(a1, . . . , aN ) : `

(
c(a1, . . . , aN )

)
= L

}
.

(6.20)

We set `min = mina∈A `(a), and similarly for `max. Since the code is one-to-one,
the number #{·} above is no more than 2L. Then(∑

a∈A

2−`(a)
)N

6
N`max∑

L=N`min

2−L2L = N(`max − `min + 1). (6.21)

Since the right side grows like N , the left side cannot grow exponentially with N ;
it must be less or equal to 1.

The second claim can be proved e.g. by suggesting an explicit construction
for the prefix code, given lengths that satisfy Kraft inequality. It is left as an
exercise. �

3The word “algorithm” derives from Abu Ja’far Muhammad ibn Musa Al-Khwarizmi, who
was born in Baghdad around 780, and who died around 850.
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Shannon entropy again appears as a limit for data compression.

Theorem II (Limit to compression). For any alphabet A, and any probability
p on A, the optimal prefix code c satisfies

H(A) 6 L(A, c) 6 H(A) + 1.

Proof. For the lower bound, consider a code c with lengths `i = `(c(ai)).
Define qi = 2−`i

z , with z =
∑

j 2−`j . We have

L(A, c) =
n∑

i=1

pi`i = −
n∑

i=1

pi log2 qi − log2 z > −
n∑

i=1

pi log2 pi = H(A). (6.22)

The inequality holds because of positivity of the relative entropy, Proposition 6.3,
and because z 6 1 (Kraft inequality).

For the upper bound, define `i = d− log2 pie (the integer immediately bigger
than − log2 pi). Then

n∑
i=1

2−`i 6
n∑

i=1

pi = 1. (6.23)

This shows that Kraft inequality is verified, so there exists a prefix code c with
these lengths. The expected length is easily estimated,

L(A, c) =
n∑

i=1

pid− log2 pie 6
n∑

i=1

pi(− log2 pi + 1) = H(A) + 1. (6.24)

�

Exercise 6.1. State and prove Jensen’s inequality.

Exercise 6.2. Check that Shannon’s entropy of the grand-canonical probability is
equal to the corresponding entropy. Consider a discrete statistical mechanics model
such as the lattice gas with nearest-neighbour interactions (Ising model).

Exercise 6.3. Recall the definitions for the codes c(1), c(2), c(3), and c(4). Explain
why c(1) is undecodable; c(2) is uniquely decodable but not prefix; c(3) and c(4) are
prefix codes.

Exercise 6.4. Given lengths {`(a)} satisfying Kraft inequality, show the existence
of a corresponding prefix code.


