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Delivering machine learning (ML) solutions to production is difficult. It’s not easy to know 
where to start, which tools and techniques to use, and whether you’re doing it right. ML 
professionals use different techniques based on their individual experiences, or they use 
prescribed tools that were developed within their company. In either case, deciding what to 
do, implementing the solution, and maintaining it require significant investments in time 
and resources. Although existing ML techniques help speed up parts of the process, 
integrating these techniques to deliver robust solutions requires months of work. This guide 
is the first part of a content series that focuses on machine learning and provides examples 
of how you can get started quickly. The goal of the series is to help you standardize your ML 
approach, make design decisions, and deliver your ML solutions efficiently. We will be 
publishing additional ML guides in the coming months, so please check the AWS 
Prescriptive Guidance website for updates. 
  
This guide explores current techniques for quantifying and managing uncertainty in deep 
learning systems, to improve predictive modeling in ML solutions. This content is for data 
scientists, data engineers, software engineers, and data science leaders who are looking to 
deliver high-quality, production-ready ML solutions efficiently and at scale.  The 
information is relevant for data scientists regardless of their cloud environment or the AWS 
services they are using or are planning to use.  
 
This guide assumes familiarity with introductory concepts in probability and deep learning. 
For suggestions on building machine learning competency at your organization, see Deep 
Learning Specialization on the Coursera website or the resources on the Machine Learning: 
Data Scientist page on the AWS Training and Certification website. 

Introduction 
 
If success in data science is defined by the predictive performance of our models, deep 
learning is certainly a strong performer. This is especially true for solutions that use non-
linear, high-dimensional patterns from very large datasets. However, if success is also 
defined by the ability to reason with uncertainty and detect failures in production, the 
efficacy of deep learning becomes questionable. How do we best quantify uncertainty? How 
do we use these uncertainties to manage risks? What are the pathologies of uncertainty that 
challenge the reliability, and therefore the safety, of our products? And how can we 
overcome such challenges? 
 
This guide: 

 Introduces the motivation for quantifying uncertainty in deep learning systems 

 Explains important concepts in probability that relate to deep learning 

https://aws.amazon.com/prescriptive-guidance/
https://aws.amazon.com/prescriptive-guidance/
https://www.coursera.org/specializations/deep-learning
https://www.coursera.org/specializations/deep-learning
https://aws.amazon.com/training/learning-paths/machine-learning/data-scientist/
https://aws.amazon.com/training/learning-paths/machine-learning/data-scientist/
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 Demonstrates current state-of-the-art techniques for quantifying uncertainty in deep 
learning systems, highlighting their associated benefits and limitations 

 Explores these techniques within the transfer learning setting of natural language 
processing (NLP)  

 Provides a case study inspired by projects performed in a similar setting 

 
As discussed in this guide, when quantifying uncertainty in deep learning, a good rule of 
thumb is to use temperature scaling with deep ensembles. 

 Temperature scaling is an ideal tool for interpreting uncertainty estimates when data 
can be considered in distribution (Guo et al. 2017). 

 Deep ensembles provide state-of-the-art estimates of uncertainty of when data is out 
of distribution (Ovadia et al. 2019). 

If the memory footprint of hosting models is a concern, you can use Monte Carlo (MC) 
dropout in place of deep ensembles. In the case of transfer learning, consider using either 
MC dropout or deep ensembles with MC dropout. 

Concepts in uncertainty 
Uncertainty represents the reliability of our inferences. Some statistics that proxy or 

approximate uncertainty include the softmax probability, predictive variance , and 

Shannon’s entropy of the softmax vector . This section introduces these statistics and 
explains what information about our predictions they provide. The section also outlines 
major pathologies of uncertainty that data scientists should be aware of. 

Beyond the softmax probability 

In classification, data scientists often use the softmax probability score as a notion of 

confidence about whether or not a predicted class (as indicated by ) is 
correct:  
 

 
 
The softmax probability  is easily accessible, which is why it has widespread adoption. 
However, there are some caveats data scientists should be aware of, such as deterministic 
overconfidence and reliability degeneration in out-of-domain contexts. 

Deterministic overconfidence 

Gal and Ghahramani (2016) warned against interpreting softmax probabilities as 
confidence scores. They empirically showed that passing a point estimate through the 
softmax activation function yields large probabilities, whereas passing a distribution of 
estimates through the softmax yields more reasonable, lower confidence scores. This 
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deterministic overconfidence is part due to what motivates learning a predictive 

distribution , instead of a single prediction . 
 

Formally, the deterministic overconfidence conjecture can be detailed by the following 
inequality: 
 

   

 
The  operator represents Shannon’s entropy, which is larger when elements of the input 
vector are more similar, and is therefore largest for uniform vectors. Thus, the previous 

equation states that the uncertainty, in terms of Shannon’s entropy , of the expected 

softmax probability vector from a Bayesian model  (the average of a distribution), 
will be larger than or equal to the softmax probability vector from a deterministic model 

 (from a model that produces a single point estimate). For a proof and 
demonstration of the inequality in the previous equation ,see Appendix A. 
 
Deterministic overconfidence affects the reliability and safety of our deep learning models. 
Consider the case where a model confidently predicts that an item on an assembly line isn’t 
defective, whereas, in fact, it is, resulting in the item skipping the quality review process. 
This faulty item might then be embedded into a larger product, compromising its integrity. 
At best, the end result is an inefficiency if the defect is caught down the line, or worse, a 
total failure of the product, if the defect isn’t found. Therefore, it is critical to understand 
and overcome deterministic overconfidence issues for the success of our projects, and for 
the future of deep learning. 
 

Three ways to improve the quality of uncertainty measurements and overcome 
overconfidence are: 

 Calibrating softmax probabilities, post-hoc, with temperature scaling (Guo et al. 
2017) 

 Approximating Bayesian inference by MC dropout (that is, keeping dropout on during 
inference) (Gal and Ghahramani 2016) 

 Approximating Bayesian inference with deep ensembles (Lakshminarayanan, Pritzel, 
and Blundell 2017) 

 
Deterministic overconfidence is a theory that applies to both in-distribution and out-of-
distribution data.1 The next sections explain how to split the total quantifiable uncertainty2 

                                                   
1 In particular, rectified linear unit  (ReLU) overconfidence has recently been found to be a significant contributor to 

overconfidence when data is far away from the decision boundary, especially when data becomes ou t of distribution (Hein et al. 

2019). One suggested way to become robust against ReLU overconfidence is to model the information theoretic notion of 

aleatoric uncertainty (Gal and Ghahramani2016, Hein et al., 2019; van Amersfoort et al., 2020), which is explained later in this 

guide. 

2 Some fields decompose total uncertainty into uncertainty that is quantifiable, and uncertainty that is not quantifiable. The 

discussion in this guide is limited to quantifiable uncertainty; therefore, the terms total uncertainty and total quantifiable 

uncertainty are used interchangeably. 
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into its two constituent components: epistemic (model) uncertainty and aleatoric (data) 
uncertainty (Kendall and Gal 2017). 

Decomposing uncertainty 

Bayesian neural networks (BNNs) yield a predictive distribution , which provides a 

set of different predictions from which you can estimate variance ; that is, total 

predictive uncertainty . The total predictive uncertainty can be split into these two 
components of uncertainty by using the law of total variance: 
 

 

 

 

 
The expected value  of a target variable , given input  and random parameters  that 

specify a BNN, , is estimated by a BNN with a single forward propagation and 

denoted as . The variance of the target, given input and random parameters, 

, is output by the BNN, too, and denoted as . Thus, the total predictive 
uncertainty is the sum of these two numbers:  

 The variance about the BNN’s predicted means  — the epistemic uncertainty  

 The average of the BNN’s predicted variance  — the aleatoric uncertainty 

The following formula demonstrates how to calculate total uncertainty in accordance with 
(Kendall and Gal 2017). BNNs input , generate a random parameter configuration , and 
make a single forward propagation through the neural network to output a mean  and 

variance . We denote a random generation, or simulation, by ~. With fixed , you can 
reiterate this process  many times to yield a set: 
 

 
 

These  many samples  provide the necessary statistics to ascertain 
uncertainties. You can do this by estimating epistemic uncertainty and aleatoric uncertainty 
separately, and then take their sum, as shown previously in the first equation in this 
section. 

Epistemic uncertainty 

Epistemic uncertainty refers to the uncertainty of the model (epistemology is the study of 
knowledge) and is often due to a lack of training data. Examples of epistemic uncertainty 
include underrepresented minority groups in a facial recognition dataset or the presence of 
rare words in a language modeling context. 
 
The epistemic uncertainty is found by the definition of variance: 
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where . 
 

Epistemic uncertainty  of a trained model will decrease as the size of training data 

increases.  might also be affected by the suitability of model architecture. As such, 
the measure of epistemic uncertainty is of great value to the machine learning engineer. 
This is because large measures of epistemic uncertainty might suggest that inference is 
being made on data that the model has less experience with. Therefore, this epistemic 
uncertainty might correspond to erroneous predictions or outlier data. 

Aleatoric uncertainty 

Aleatoric uncertainty refers to the data’s inherent randomness that cannot be explained 
away (aleator refers to someone who rolls the dice in Latin). Examples of data with 
aleatoric uncertainty include noisy telemetry data and low-resolution images or social 

media text. You can assume the aleatoric uncertainty , the inherent randomness, 
to be either constant (homoscedastic) or variable (heteroscedastic), as a function of the 
input explanatory variables.  

Homoscedastic aleatoric uncertainty 

Homoscedastic aleatoric uncertainty, when  is constant, is the simplest case and 
commonly encountered in regression under the modeling assumption that , 
where , where  is the identity matrix and  is a constant scalar. It is highly 
restrictive to assume constant aleatoric risk—to assume that noise  about a response  is 
independent from the explanatory variable  and constant—and rarely reflective of reality. 
Many phenomena in nature do not exhibit constant randomness. For example, uncertainty 
about outcomes in physical systems, such as fluid motion, are usually a function of kinetic 
energy. Consider the contrast between the turbulent water flow of a large waterfall and the 
laminar water flow of a decorative fountain. The stochasticity (randomness) of a water 
particle’s trajectory is a function of the kinetic energy and therefore not constant. This 
assumption can lead to loss of valuable information when modeling relationships between 
targets and inputs that host variable noise, and cannot be explained with the observable 
information. As a consequence, in most cases, it is not sufficient to assume homoscedastic 
uncertainty. Unless the phenomena is known to be homoscedastic in nature, the inherent 
noise should be modeled as a function of the explanatory variables , if it can be done so. 
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Heteroscedastic aleatoric uncertainty 

Heteroscedastic aleatoric uncertainty is when we consider the inherent randomness within 

data to be a function of the data itself  . To calculate this type of uncertainty, you 
average a sample set of the predictive variance: 

 

with  being estimated by a BNN. Learning aleatoric uncertainty during training 
encourages BNNs to encapsulate the inherent randomness within the data that can’t be 

explained away. If there is no inherent randomness,  should tend toward zero. 

An information theoretic approach to uncertainty 

The explanation of uncertainty in the previous section relies only on the variance notion of 
uncertainty, but information theoretic notions of uncertainty exist, too. Incorporating 
information theoretic aleatoric uncertainty improves robustness of the total uncertainty 
estimate (Gal 2016; Hein, Andriushchenko, and Bitterwolf 2019, van Amersfoort et al. 
2020). Total uncertainty is measured by Shannon’s entropy:  

 
where  is the dot product operator and  is the number of classes. 
 

The predictive entropy  is available to both Bayesian and non-Bayesian neural 
networks. In order to decompose this total uncertainty into the epistemic and aleatoric 

components, you must estimate the mutual information , and this requires a 
Bayesian approach. 

 

 

Reliability degeneration in out-of-distribution contexts 

Practitioners of deep learning often assume that test data and training data share the same 
distribution. Unfortunately, this assumption doesn’t always hold in practice. The world 
evolves, and data generated from the future is often out-of-distribution (ood). 
Consequently, as context changes, the in-distribution assumption becomes less realistic, 
and so does the reliability of our predictions and uncertainties (Fort, Hu, and 
Lakshminarayanan, 2019; Nalisnick et al., 2019; Ovadia et al., 2019). In fact, predictive 
performance can decrease while measures of confidence increase, which causes a silent 
failure.  
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Methods for estimating uncertainty in deep learning 
This section discusses three methods for quantifying uncertainty in deep learning networks, 
and provides general recommendations for using each method: 

 Temperature scaling 

 Monte Carlo dropout 

 Deep ensembles  

Temperature scaling 

 
In classification problems, the predicted probabilities (softmax output) are assumed to 
represent the true correctness probability for the predicted class. However, although this 
assumption might have been reasonable for models a decade ago, it isn’t true for today’s 
modern neural network models (Guo et al. 2017). The loss of connection between model 
predicting probabilities and the confidence of model predictions would prevent the 
application of modern neural network models into real-world problems, as in decision-
making systems. Precisely knowing the confidence score of model predictions is one of the 
most critical risk control settings required for building robust and trustworthy machine 
learning applications. 
 
Modern neural network models tend to have large architectures with millions of learning 
parameters. The distribution of predicting probabilities in such models is often highly 
skewed to either 1 or 0, meaning that the model is overconfident and the absolute value of 
these probabilities could be meaningless. (This issue is independent of whether class 
imbalance is present in the dataset.) Various calibration methods for creating a prediction 
confidence score have been developed in the past ten years through post-processing steps to 
recalibrate the naïve probabilities of the model. This section describes one calibration 
method called temperature scaling, which is a simple yet effective technique for 
recalibrating prediction probabilities (Guo et al. 2017). Temperature scaling is a single-
parameter version of Platt Logistic Scaling (Platt 1999). 
 
Temperature scaling uses a single scalar parameter T > 0, where T is the temperature, to 
rescale logit scores before applying the softmax function, as shown in the following figure. 
Because the same T is used for all classes, the softmax output with scaling has a monotonic 
relationship with unscaled output. When T = 1, you recover the original probability with the 
default softmax function. In overconfident models where T > 1, the recalibrated 
probabilities have a lower value than the original probabilities, and they are more evenly 
distributed between 0 and 1.   
 
The method to get an optimal temperature T for a trained model is through minimizing the 
negative log likelihood for a held-out validation dataset.  
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We recommend that you integrate the temperature scaling method as a part of the model 
training process: After a model training is completed, extract the temperature value T by 
using the validation dataset, and then rescale logit values by using T in the softmax 
function. Based on experiments in text classification tasks using BERT-based models, the 
temperature T usually scales between 1.5 and 3.  
 
The following figure illustrates the temperature scaling method, which applies temperature 
value T before passing the logit score to the softmax function. 
 

 
 
The calibrated probabilities by temperature scaling can approximately represent the 
confidence score of model predictions. This can be evaluated quantitatively by creating a 
reliability diagram (Guo et al. 2017), which represents the alignment between the 
distribution of expected accuracy and the distribution of predicting probabilities. 
 
Temperature scaling has also been evaluated as an effective way to quantify total predictive 
uncertainty in the calibrated probabilities, but it is not robust in capturing epistemic 
uncertainty in scenarios like data drifts (Ovadia et al. 2019). Considering the ease of 
implementation, we recommend that you apply temperature scaling to your deep learning 
model output to build a robust solution for quantifying predictive uncertainties.  

Monte Carlo dropout 

One of the most popular ways to estimate uncertainty is by inferring predictive 
distributions with Bayesian neural networks. To denote a predictive distribution, use: 
 

, 
 

with target , input , and  many training examples . When you obtain a 
predictive distribution, you can inspect the variance and uncover uncertainty. One way to 
learn a predictive distribution requires learning a distribution over functions, or, 
equivalently, a distribution over the parameters (that is, the parametric posterior 

distribution ).   
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The Monte Carlo (MC) dropout technique (Gal and Ghahramani, 2016) provides a scalable 
way to learn a predictive distribution. MC dropout works by randomly switching off 
neurons in a neural network, which regularizes the network. Each dropout configuration 
corresponds to a different sample from the approximate parametric posterior distribution 

 : 
 

, 
 
where  corresponds to a dropout configuration, or, equivalently, a simulation ~, sampled 

from the approximate parametric posterior , as shown in the following figure. 

Sampling from the approximate posterior  enables Monte Carlo integration of the 
model’s likelihood, which uncovers the predictive distribution, as follows: 
 

 
 
For simplicity, the likelihood may be assumed to be Gaussian distributed:  
 

 
 

with the Gaussian function  specified by the mean  and variance  
parameters, which are output by simulations from the Monte Carlo dropout BNN: 
 

 
 

The following figure illustrates MC dropout. Each dropout configuration yields a different 
output by randomly switching neurons off (grey circles) and on (black circles) with each 
forward propagation. Multiple forward passes with different dropout configurations yield a 
predictive distribution over the mean p(f(x, ø)). 



AWS Prescriptive Guidance – Quantifying uncertainty in deep learning systems August 2020 

Page 11 of 25  

 
 

 
The number of forward passes through the data should be evaluated quantitatively, but 30-
100 is an appropriate range to consider (Gal and Ghahramani 2016). 

Deep ensembles 

The core idea behind ensembling is that by having a committee of models, different 
strengths will complement one another, and many weaknesses will cancel each other out. 
This is the guiding intuition behind 18th century French mathematician Nicolas de 
Condorcet’s famous jury theorem (Estlund 1994): If each juror has a probability that's 
greater than 50% of arriving at the true verdict, and if the jurors make independent 
decisions, the probability of a correct group verdict increases to 100% as the number of 
jurors increases. 
 
Moving to recent history, the process of ensembling ML models includes two steps: training 
different models and combining the predictions. You can obtain different models by using 
different feature subsets, training data, training regimes, and model architectures. You can 
combine predictions by averaging them, training a new model on top of the predictions 
(model stacking), or using custom voting rules that you can tune to a specific context (see 
the case study for one such example). Two of the initial ensembling techniques for machine 
learning are boosting (Freund and Schapire 1996) and random forests (Breiman 2001). 
These are two complementary approaches.  
 
The idea behind boosting is to sequentially train weak learners. Each subsequent model 
focuses on a subset of the data and is boosted by the errors previously observed during 
training. In this way each sequential tree is trained on a new training set that was 
previously unseen. At the end of training, predictions are averaged across the weak 
learners.  
 
The idea behind random forests is training multiple decision tree models without pruning, 
on bootstrapped samples of the data and by selecting random feature subsets. Breiman 
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showed that the generalization error has an upper bound that is a function of the number 
and decorrelation of the individual trees. 

In deep learning, dropout is designed as a regularization technique and can also be 
interpreted as an ensemble of multiple models (Srivastava et al. 2014). The realization that 
dropout could be used to effectively quantify uncertainty (Gal and Ghahramani 2016) 
motivated a further exploration of ensembles in deep learning models for the same purpose. 
Deep ensembles have been shown to outperform MC dropout in quantifying uncertainty in 
a variety of datasets and tasks in regression and classification (Lakshminarayanan., Pritzel, 
and Blundell 2017). Additionally, deep ensembles have been shown to be state-of-the-art in 
out-of-distribution settings (such as perturbations of the data or the introduction of new 
classes unseen during training). They outperform MC dropout and other methods (Ovadia 
et al. 2019). The reason why deep ensembles perform so well in out-of-distribution settings 
is that their weight values and loss trajectories are very different from one another, and, as 
a result, they lead to diverse predictions (Fort, Hu, and Lakshminarayanan 2019).  

Neural networks often have hundreds of millions more parameters than training data 
points. This means that they include a large space of possible functions that might 
sufficiently approximate the data generating function. Consequently, there are many low-
loss valleys and regions that all correspond to good, but different, functions. Viewed from a 
Bayesian perspective (Wilson and Izmailov 2020), these candidate functions correspond to 
different hypotheses that identify the true underlying function. As such, the more candidate 
functions you ensemble, the more likely you are to represent the truth, and therefore 
achieve a robust  model that shows low confidence when you extend inference out of 
distribution. Ensembles essentially settle in many distant low-loss valleys, yielding a 
distribution of diverse functions (Fort,Hu, and Lakshminarayanan 2019). On the other 
hand, alternative methods such as MC dropout and alternative Bayesian approaches will 
hone in to just one valley, yielding a distribution of similar functions. Therefore, just a few 
independently trained neural networks from the ensemble—(Lakshminarayanan, Pritzel, 
and Blundell 2017) and (Ovadia et al. 2019) suggest that five models are sufficient—will 
more accurately recover the true marginal likelihood (predictive distribution), when 
compared with sampling around a single low-loss region, which will host a lot of 
redundancy (because functions will all be similar). 

In summary, to improve your accuracy and to maximize the reliability of your uncertainties, 
ensemble your models. 

Quantitative comparison of uncertainty methods 
 
This section describes how we compared the methods for estimating uncertainty by using 
the Corpus of Linguistic Acceptability (CoLA) (Warstadt, Singh, and Bowman 2019) 
dataset. The CoLA dataset consists of a collection of sentences along with a binary indicator 
of whether they are acceptable. Sentences can be labeled as unacceptable for a variety of 
reasons, including improper syntax, semantics, or morphology. These sentences are taken 
from examples in linguistic publications. There are two validation sets. One validation set is 
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taken from the same sources used in forming the training dataset (in domain), and the 
other validation set is taken from sources that aren’t contained in the training set (out of 
domain). The following table summarizes this information. 
 

Dataset Total size Positive Negative 

Training 8551 6023 2528 

Validation (in domain) 527 363 164 

Validation (out of domain) 516 354 162 

 

 
The comparison uses a RoBERTa (Liu et al., 2019) base architecture with pretrained 
weights  and a randomly initialized head with a single hidden layer. Hyperparameters are 
mostly suggested in the RoBERTa paper with a few minor modifications. 

Temperature scaling 

 
We took the average of five different values, obtaining a value of T = 2.62 across different 
training seeds. The following charts show calibration before and after temperature scaling. 
As the first chart shows, unscaled softmax values revealed major discrepancies. For 
example, the 70-80% confidence bucket contains predictions that are less than 50% 
accurate. After scaling, the calibration improves substantially. For example, the 70-80% 
bucket corresponds to 72% accuracy. Consequently, we used the temperature-scaled values 
for subsequent experiments. 
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Document coverage and accuracy ─ in domain 

 
We compared the predictive performance of deep ensembles with dropout applied at test 
time, MC dropout, and a naïve softmax function, as shown in the following graph. After 
inference, predictions with the highest uncertainties were dropped at different levels, 
yielding remaining data coverage that ranged from 10% to 100%. We expected the deep 
ensemble to more efficiently identify uncertain predictions due to its greater ability to 
quantify epistemic uncertainty; that is, to identify regions in the data where the model has 
less experience. This should be reflected in higher accuracy for different data coverage 
levels. For each deep ensemble, we used 5 models and applied inference 20 times. For MC 
dropout, we applied inference 100 times for each model. We used the same set of 
hyperparameters and model architecture for each method. 
 

 
 

 

The graph appears to show a slight benefit to using deep ensembles and MC dropout 
compared with naïve softmax. This is most notable in the 50-80% data coverage range. 
Why is this not greater? As mentioned in the deep ensembles section, the strength of deep 
ensembles comes from the different loss trajectories taken. In this situation, we are using 
pretrained models. Although we fine-tune the entire model, the overwhelming majority of 
the weights are initialized from the pretrained model, and only a few hidden layers are 
randomly initialized. Consequently, we conjecture that pretraining of large models can 
cause an overconfidence due to little diversification. To our knowledge, the efficacy of deep 
ensembles has not been previously tested in transfer learning scenarios, and we see this as 
an exciting area for future research. 



AWS Prescriptive Guidance – Quantifying uncertainty in deep learning systems August 2020 

Page 15 of 25  

Document coverage and accuracy ─ out of domain 

 
We also examined out-of-domain data, which was taken from syntax textbooks that weren’t 
used to source the training data. However, we didn’t observe a noticeable difference in 
relative performance. This is perhaps because the quantitative content of linguistic features 
would likely differ very little, although sentences are sourced from different textbooks.  

The following chart provides a comparison of the most frequent linguistic features across 
the two data sources. It shows very little difference between the distributions of the in-
domain and out-of-domain datasets. Furthermore, with respect to vocabulary, the model 
had at least some exposure with out-of-domain language during training on in-domain 
examples. All words found in the out-of-domain set had a frequency count of at least 100 
over the entire training set (Warstadt, Singh, and Bowman 2019). Thus, the out-of-domain 
data wasn’t considered as truly out of distribution. For more information on the linguistic 
features, see Warstadt, Singh, and Bowman (2019). 

 

 
 

 
To gain a better sense of the deep ensemble’s and Monte Carlo dropout’s ability to estimate 
uncertainty in a truly out-of-distribution setting, we created three adversarial datasets that 
included random words injected into the sentences:  
 

 One dataset with rare words not found in the training dataset  

 One dataset with non-English words not found in the training dataset  

 One dataset with a mixture of the previous two datasets 

All of the injected words were present in the original vocabulary used for pretraining the 
model.  
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The following graph shows the correlation between accuracy and coverage for the third 
dataset. The first and second datasets show similar patterns. 
 

 
 
 
The graph shows a clear benefit from using either MC dropout or deep ensembles with MC 
dropout for coverage levels above 40%. We suspect that these two methods show similar 
performance because the pretraining model doesn’t include much diversification. This 
opens the way for further investigations. The significant performance degradation for the 
naïve softmax method that occurs above 40% document coverage is likely because we 
altered approximately 55% of the validation set with our adversarial data generation 
process. In the low coverage region, the methods have similar accuracy values, because 
these sets of data aren’t out of distribution.  

Case study 

This section examines a real-world business scenario and application for quantifying 
uncertainty in deep learning systems. Suppose you want a machine learning model to 
automatically judge whether a sentence is grammatically unacceptable (negative case) or 
acceptable (positive case). Consider the following business process: If the model flags a 
sentence as grammatically acceptable (positive), you process it automatically, without 
human review. If the model flags the sentence as unacceptable (negative), you pass the 
sentence to a human for review and correction. The case study uses deep ensembles along 
with temperature scaling. 

This scenario has two business objectives: 
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 High recall for negative cases. We want to catch all sentences that have 
grammatical errors. 

 Reduction of the manual workload. We want to auto-process cases that have no 
grammatical errors as much as possible. 

Baseline results 

 
When applying a single model to the data with no dropout at test time, these are the results: 

 For positive sample: recall=94%, precision=82% 
 For negative sample: recall=52%, precision=79% 

The model has much lower performance for negative samples. However, for business 
applications, recall for negative samples should be the most important metric. 

Application of deep ensembles 

 
To quantify model uncertainty, we used the standard deviations of individual model 
predictions across deep ensembles. Our hypothesis is that for false positives (FP) and false 
negatives (FN) we expect to see the uncertainty to be much higher than for true positives 
(TP) and true negatives (TN). Specifically, the model should have high confidence when it is 
correct and low confidence when it is wrong, so we can use uncertainty to tell when to trust 
the model’s output. 
 
The following confusion matrix shows the uncertainty distribution across FN, FP, TN, and 
TP data. The probability of negative standard deviation is the standard deviation of the 
probability of negatives across models. The median, mean, and standard deviations are 
aggregated across the dataset.  
 

Label 

Probability of negative standard deviation 

Median Mean 
Standard 

deviation 

FN 0.061 0.060 0.027 

FP 0.063 0.062 0.040 

TN 0.039 0.045 0.026 

TP 0.009 0.020 0.025 
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As the matrix shows, the model performed the best for TP, so that has the lowest 
uncertainty. The model performed the worst for FP, so that has the highest uncertainty, 
which is in line with our hypothesis. 

To directly visualize the model’s deviation among ensembles, the following graph plots 
probability in a scatter view for FN and FP for the CoLA data. Each vertical line is for one 
specific input sample. The graph shows eight ensemble model views. That is, each vertical 
line has eight data points. These points either perfectly overlap or are distributed in a range. 

The first graph shows that for the FPs, the probability of being positive distributes between 
0.5 and 0.925 across all eight models in the ensemble. 

 

Similarly, the next graph shows that for the FNs, the probability of being negative 
distributes between 0.5 and 0.85 among the eight models in the ensemble. 
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Defining a decision rule 

To maximize the benefit of the results, we use the following ensemble rule: For each input, 
we take the model that has the lowest probability of being positive (acceptable) to make 
flagging decisions. If the selected probability is larger than, or equal to, the threshold value, 
we flag the case as acceptable and auto-process it. Otherwise, we send the case for human 
review. This is a conservative decision rule that is appropriate in highly regulated 
environments.  

Evaluating the results 

The following graph shows the precision, recall, and auto (automation) rate for the negative 
cases (cases with grammatical errors). The automation rate refers to the percentage of cases 
that will be automatically processed because the model flags the sentence as acceptable. A 
perfect model with 100% recall and precision would achieve a 69% (positive cases/total 
cases) automation rate, because only positive cases will be automatically processed. 
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The comparison between the deep ensemble and naïve cases shows that, for the same 
threshold setting, recall increases quite drastically and precision decreases slightly. (The 
automation rate depends on the positive and negative sample ratio in the test dataset.) For 
example:  

 Using a threshold value of 0.5: 

o With a single model, the recall for negative cases will be 52%.  
o With the deep ensemble approach, the recall value will be 69%.  

 Using a threshold value of 0.88: 

o With a single model, the recall for negative cases will be 87%. 
o With the deep ensemble approach, the recall value will be 94%. 

You can see that deep ensemble can boost certain metrics  (in our case, the recall of 
negative cases) for business applications, without a requirement to increase the size of the 
training data, its quality, or a change in the model’s method.  

Conclusion 
 
This guide provided a conceptual overview of uncertainty in deep learning systems. It 
described experiments that extend the existing literature to cover the transfer learning 
scenario for natural language processing (NLP) in both in-distribution and out-of-
distribution settings. Finally, it provided a case study that serves as a roadmap for how data 
scientists can apply these concepts in their work in a highly regulated industry. 
 



AWS Prescriptive Guidance – Quantifying uncertainty in deep learning systems August 2020 

Page 21 of 25  

When quantifying uncertainty in deep learning networks, our general recommendation is to 
use temperature scaling with deep ensembles. Temperature scaling provides interpretable 
uncertainty estimates when incoming data is in distribution. Therefore, temperature scaling 
addresses the total uncertainty by adjusting the softmax uncertainties so that they are not 
so overconfident. Temperature scaling should be performed on the validation dataset, after 
the model has been trained on the validation dataset.  
 
Deep ensembles currently provide state-of-the-art estimates of uncertainty when data is out 
of distribution. They provide higher epistemic uncertainty estimates when presented with 
data that’s different from the training data. This is due to the strength in diversity of the 
underlying models that comprise the deep ensemble. We suggest that five models will 
suffice in most situations. 
 
In two scenarios, we recommend that you consider MC dropout as an alternative to deep 
ensembles: when hosting multiple models is a concern due to additional load to the 
infrastructure, and in transfer learning (that is, when using pretrained weights). When the 
hosting requirements for multiple models is a concern, MC dropout is a valid alternative to 
deep ensembles. If you're using MC dropout as a replacement for deep ensembles, you 
should be prepared to sacrifice some computational latency for the sake of more iterations 
through the data. We recommend 30-100 iterations as an appropriate range. In transfer 
learning, there will be less diversification among the ensembled base learners (that is, the 
underlying model weights will be more similar to one another). This is why total predictive 
uncertainty can be low in transfer learning, especially in settings with out-of-distribution 
data. As a result, in the transfer learning situation, consider supplementing or replacing 
deep ensembles with MC dropout. 
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Appendix A. Proof of deterministic overconfidence (binary 
classification) 
Consider the softmax (logistic) function binary classification: 
 

 
 

The softmax function is concave for  and convex for . Therefore, by Jensen's 
inequality: 
 

 
 

This implies  for all . Equality is obtained when . 
 

Appendix B. Empirical demonstration of deterministic 
overconfidence  
 
To empirically support the theoretical evidence in Appendix A for deterministic 
overconfidence, we compared the total entropy from each modeling technique. We 
observed that there was higher total entropy for MC dropout and deep ensembles with MC 
dropout, when compared with the deterministic case. This holds for both acceptable and 
unacceptable sentences. Furthermore, it holds true for the dataset that was generated using 
adversarial techniques. The following charts show the total entropy comparison. 
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Appendix C. Other considerations and notable methods 
This guide addresses the most practical and effective ways to ascertain reliable measures of 
uncertainty. It also addresses some of the major pathologies such as out-of-distribution 
degeneration and deterministic overconfidence.  Other recent techniques include 
deterministic uncertainty quantification (DUQ) (van Amersfoort et al. 2020) and 
prediction-time batch normalization (Nado et al. 2020).  
 
DUQs are a new kind of deep learning classifier that do not utilize the traditional softmax 
function. Instead, DUQs provide reliable uncertainty for out-of-distribution data. DUQs 
output a vector, f(x), which is transformed by a class-specific weight matrix, Wc, for 
mapping to a feature vector. The distance between this feature vector and learnt centroids 
(one centroid for each class) represents the corresponding uncertainties. The distance to 
the closest centroid is deemed the predictive uncertainty. Feature vectors are able to map 
far from centroids for out-of-distribution data by regularizing the model’s smoothness. The 
novel regularization method tunes smoothness so that changes of output coincide with 
changes in input, without changing so much that it compromises generalization. DUQs are 
a promising new way for modeling uncertainty and provide an alternative to deep 
ensembles for reliable uncertainty in out-of-distribution settings. For details, see the 
publications in the References section. 
 
Another method worth noting is prediction-time batch normalization for out-of-
distribution robustness (Nado et al. 2020). This technique requires just a few lines of code 
to implement and claims to improve uncertainty reliability with out-of-distribution data in 
a way that is complementary to deep ensembles. An interesting caveat to this method is that 
the quality of uncertainty actually degenerates for pretraining settings, which raises 
questions for future work. 
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