
CUDA SHARED MEMORY
NVIDIA Corporation

2

REVIEW (1 OF 2)

Difference between host and device

Host CPU

Device GPU

Using __global__ to declare a function as device code

Executes on the device

Called from the host (or possibly from other device code)

Passing parameters from host code to a device function

3

REVIEW (2 OF 2)

Basic device memory management

cudaMalloc()

cudaMemcpy()

cudaFree()

Launching parallel kernels

Launch N copies of add() with add<<<N,1>>>(…);

Use blockIdx.x to access block index

4

1D STENCIL

Consider applying a 1D stencil to a 1D array of elements

Each output element is the sum of input elements within a radius

If radius is 3, then each output element is the sum of 7 input elements:

radius radius

5

IMPLEMENTING WITHIN A BLOCK

Each thread processes one output element

blockDim.x elements per block

Input elements are read several times

With radius 3, each input element is read seven times

6

SHARING DATA BETWEEN THREADS

Terminology: within a block, threads share data via shared memory

Extremely fast on-chip memory, user-managed

Declare using __shared__, allocated per block

Data is not visible to threads in other blocks

7

IMPLEMENTING WITH SHARED MEMORY

Cache data in shared memory

Read (blockDim.x + 2 * radius) input elements from global memory to shared memory

Compute blockDim.x output elements

Write blockDim.x output elements to global memory

Each block needs a halo of radius elements at each boundary

blockDim.x output elements

halo on left halo on right

8

STENCIL KERNEL

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + RADIUS;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] =

in[gindex + BLOCK_SIZE];
}

9

STENCIL KERNEL

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

10

DATA RACE!

The stencil example will not work…

Suppose thread 15 reads the halo before thread 0 has fetched

temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];
}
int result = 0;

result += temp[lindex + 1];

Store at temp[18]

Load from temp[19]

Skipped, threadIdx > RADIUS

11

__SYNCTHREADS()

void __syncthreads();

Synchronizes all threads within a block

Used to prevent RAW / WAR / WAW hazards

All threads must reach the barrier

In conditional code, the condition must be uniform across the block

12

STENCIL KERNEL

Stencil Kernel

__global__ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS];
int gindex = threadIdx.x + blockIdx.x * blockDim.x;
int lindex = threadIdx.x + radius;

// Read input elements into shared memory
temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS) {

temp[lindex – RADIUS] = in[gindex – RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}
// Synchronize (ensure all the data is available)
__syncthreads();

13

STENCIL KERNEL

Stencil Kernel

// Apply the stencil
int result = 0;
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)

result += temp[lindex + offset];

// Store the result
out[gindex] = result;

}

14

REVIEW

Use __shared__ to declare a variable/array in shared memory

Data is shared between threads in a block

Not visible to threads in other blocks

Use __syncthreads() as a barrier

Use to prevent data hazards

15

DEVELOPERS
Scalable Cooperation among groups of threads

Flexible parallel decompositions

Composition across software boundaries

Deploy Everywhere

Examples include:
Persistent RNNs
Physics
Search Algorithms
Sorting

Cooperative Groups: a flexible model for synchronization and
communication within groups of threads.

At a glance Benefits all applications

LOOKING FORWARD

16

FOR EXAMPLE: THREAD BLOCK

Implicit group of all the threads in the launched thread block

Implements the same interface as thread_group:

void sync(); // Synchronize the threads in the group

unsigned size(); // Total number of threads in the group

unsigned thread_rank(); // Rank of the calling thread within [0, size)

bool is_valid(); // Whether the group violated any API constraints

And additional thread_block specific functions:

dim3 group_index(); // 3-dimensional block index within the grid

dim3 thread_index(); // 3-dimensional thread index within the block

17

NARROWING THE SHARED MEMORY GAP
with the GV100 L1 cache

Pascal Volta

Cache: vs shared

• Easier to use

• 90%+ as good

Shared: vs cache

• Faster atomics

• More banks

• More predictable

Average
Shared
Memory
Benefit

70%

93%

Directed testing: shared in global

18

FUTURE SESSIONS

CUDA GPU architecture and basic optimizations

Atomics, Reductions, Warp Shuffle

Using Managed Memory

Concurrency (streams, copy/compute overlap, multi-GPU)

Analysis Driven Optimization

Cooperative Groups

19

FURTHER STUDY

Shared memory:

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/

CUDA Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#shared-memory

CUDA Documentation:

https://docs.nvidia.com/cuda/index.html

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html (runtime API)

https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

20

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw2/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

http://home.ccs.ornl.gov
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw2/readme.md

QUESTIONS?

