CUDA Cooperative Groups

Introduction

CUDA cooperative groups is a feature that allows developers to create and manage groups of threads that can synchronize and communicate with each other. Cooperative groups provide a more flexible and efficient way to write parallel algorithms on the GPU compared to traditional CUDA programming models.

In this blog post, we will discuss the parallel reduction algorithm and its implementation in CUDA using cooperative groups.

Batched Reduce Sum and Full Reduce Sum Using Cooperative Groups

In this example, we modified the two batched reduce sum kernels implemented in the previous blog post “CUDA Reduction” to use cooperative groups for synchronization and communication between threads. The reduction algorithms remain exactly the same, only the APIs used for synchronizing groups of threads are different. We also implemented a full reduce sum kernel that reduces an array of elements to a single value using cooperative groups using one single kernel launch.

reduce_sum_cooperative_groups.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
#include <cassert>
#include <functional>
#include <iostream>
#include <string>
#include <vector>

#include <cooperative_groups.h>
#include <cuda_runtime.h>

#define CHECK_CUDA_ERROR(val) check((val), #val, __FILE__, __LINE__)
void check(cudaError_t err, char const* func, char const* file, int line)
{
if (err != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: " << file << ":" << line
<< std::endl;
std::cerr << cudaGetErrorString(err) << " " << func << std::endl;
std::exit(EXIT_FAILURE);
}
}

#define CHECK_LAST_CUDA_ERROR() check_last(__FILE__, __LINE__)
void check_last(char const* file, int line)
{
cudaError_t const err{cudaGetLastError()};
if (err != cudaSuccess)
{
std::cerr << "CUDA Runtime Error at: " << file << ":" << line
<< std::endl;
std::cerr << cudaGetErrorString(err) << std::endl;
std::exit(EXIT_FAILURE);
}
}

template <class T>
float measure_performance(std::function<T(cudaStream_t)> bound_function,
cudaStream_t stream, size_t num_repeats = 10,
size_t num_warmups = 10)
{
cudaEvent_t start, stop;
float time;

CHECK_CUDA_ERROR(cudaEventCreate(&start));
CHECK_CUDA_ERROR(cudaEventCreate(&stop));

for (size_t i{0}; i < num_warmups; ++i)
{
bound_function(stream);
}

CHECK_CUDA_ERROR(cudaStreamSynchronize(stream));

CHECK_CUDA_ERROR(cudaEventRecord(start, stream));
for (size_t i{0}; i < num_repeats; ++i)
{
bound_function(stream);
}
CHECK_CUDA_ERROR(cudaEventRecord(stop, stream));
CHECK_CUDA_ERROR(cudaEventSynchronize(stop));
CHECK_LAST_CUDA_ERROR();
CHECK_CUDA_ERROR(cudaEventElapsedTime(&time, start, stop));
CHECK_CUDA_ERROR(cudaEventDestroy(start));
CHECK_CUDA_ERROR(cudaEventDestroy(stop));

float const latency{time / num_repeats};

return latency;
}

std::string std_string_centered(std::string const& s, size_t width,
char pad = ' ')
{
size_t const l{s.length()};
// Throw an exception if width is too small.
if (width < l)
{
throw std::runtime_error("Width is too small.");
}
size_t const left_pad{(width - l) / 2};
size_t const right_pad{width - l - left_pad};
std::string const s_centered{std::string(left_pad, pad) + s +
std::string(right_pad, pad)};
return s_centered;
}

template <size_t NUM_THREADS>
__device__ float thread_block_reduce_sum(
cooperative_groups::thread_block_tile<NUM_THREADS> group,
float shared_data[NUM_THREADS], float val)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
size_t thread_idx{group.thread_rank()};
shared_data[thread_idx] = val;
group.sync();
#pragma unroll
for (size_t offset{group.size() / 2}; offset > 0; offset /= 2)
{
if (thread_idx < offset)
{
shared_data[thread_idx] += shared_data[thread_idx + offset];
}
group.sync();
}
// There will be no shared memory bank conflicts here.
// Because multiple threads in a warp address the same shared memory
// location, resulting in a broadcast.
return shared_data[0];
}

__device__ float thread_block_reduce_sum(cooperative_groups::thread_block group,
float* shared_data, float val)
{
size_t const thread_idx{group.thread_rank()};
shared_data[thread_idx] = val;
group.sync();
for (size_t stride{group.size() / 2}; stride > 0; stride /= 2)
{
if (thread_idx < stride)
{
shared_data[thread_idx] += shared_data[thread_idx + stride];
}
group.sync();
}
return shared_data[0];
}

template <size_t NUM_WARPS>
__device__ float thread_block_reduce_sum(float shared_data[NUM_WARPS])
{
float sum{0.0f};
#pragma unroll
for (size_t i{0}; i < NUM_WARPS; ++i)
{
// There will be no shared memory bank conflicts here.
// Because multiple threads in a warp address the same shared memory
// location, resulting in a broadcast.
sum += shared_data[i];
}
return sum;
}

__device__ float thread_reduce_sum(float const* __restrict__ input_data,
size_t start_offset, size_t num_elements,
size_t stride)
{
float sum{0.0f};
for (size_t i{start_offset}; i < num_elements; i += stride)
{
sum += input_data[i];
}
return sum;
}

__device__ float
warp_reduce_sum(cooperative_groups::thread_block_tile<32> group, float val)
{
#pragma unroll
for (size_t offset{group.size() / 2}; offset > 0; offset /= 2)
{
// The shfl_down function is a warp shuffle operation that only exists
// for thread block tiles of size 32.
val += group.shfl_down(val, offset);
}
// Only the first thread in the warp will return the correct result.
return val;
}

template <size_t NUM_THREADS>
__device__ float
thread_block_reduce_sum_v1(float const* __restrict__ input_data,
size_t num_elements)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
__shared__ float shared_data[NUM_THREADS];
size_t const thread_idx{
cooperative_groups::this_thread_block().thread_index().x};
float sum{
thread_reduce_sum(input_data, thread_idx, num_elements, NUM_THREADS)};
shared_data[thread_idx] = sum;
// This somehow does not work.
// static thread block cooperative groups is still not supported.
// cooperative_groups::thread_block_tile<NUM_THREADS> const
// thread_block{cooperative_groups::tiled_partition<NUM_THREADS>(cooperative_groups::this_thread_block())};
// float const block_sum{thread_block_reduce_sum<NUM_THREADS>(thread_block,
// shared_data, sum)}; This works.
float const block_sum{thread_block_reduce_sum(
cooperative_groups::this_thread_block(), shared_data, sum)};
return block_sum;
}

template <size_t NUM_THREADS, size_t NUM_WARPS = NUM_THREADS / 32>
__device__ float
thread_block_reduce_sum_v2(float const* __restrict__ input_data,
size_t num_elements)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
__shared__ float shared_data[NUM_WARPS];
size_t const thread_idx{
cooperative_groups::this_thread_block().thread_index().x};
float sum{
thread_reduce_sum(input_data, thread_idx, num_elements, NUM_THREADS)};
cooperative_groups::thread_block_tile<32> const warp{
cooperative_groups::tiled_partition<32>(
cooperative_groups::this_thread_block())};
sum = warp_reduce_sum(warp, sum);
if (warp.thread_rank() == 0)
{
shared_data[cooperative_groups::this_thread_block().thread_rank() /
32] = sum;
}
cooperative_groups::this_thread_block().sync();
float const block_sum{thread_block_reduce_sum<NUM_WARPS>(shared_data)};
return block_sum;
}

template <size_t NUM_THREADS>
__global__ void batched_reduce_sum_v1(float* __restrict__ output_data,
float const* __restrict__ input_data,
size_t num_elements_per_batch)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
size_t const block_idx{cooperative_groups::this_grid().block_rank()};
size_t const thread_idx{
cooperative_groups::this_thread_block().thread_rank()};
float const block_sum{thread_block_reduce_sum_v1<NUM_THREADS>(
input_data + block_idx * num_elements_per_batch,
num_elements_per_batch)};
if (thread_idx == 0)
{
output_data[block_idx] = block_sum;
}
}

template <size_t NUM_THREADS>
__global__ void batched_reduce_sum_v2(float* __restrict__ output_data,
float const* __restrict__ input_data,
size_t num_elements_per_batch)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
constexpr size_t NUM_WARPS{NUM_THREADS / 32};
size_t const block_idx{cooperative_groups::this_grid().block_rank()};
size_t const thread_idx{
cooperative_groups::this_thread_block().thread_rank()};
float const block_sum{thread_block_reduce_sum_v2<NUM_THREADS, NUM_WARPS>(
input_data + block_idx * num_elements_per_batch,
num_elements_per_batch)};
if (thread_idx == 0)
{
output_data[block_idx] = block_sum;
}
}

template <size_t NUM_THREADS, size_t NUM_BLOCK_ELEMENTS>
__global__ void full_reduce_sum(float* output,
float const* __restrict__ input_data,
size_t num_elements, float* workspace)
{
static_assert(NUM_THREADS % 32 == 0,
"NUM_THREADS must be a multiple of 32");
static_assert(NUM_BLOCK_ELEMENTS % NUM_THREADS == 0,
"NUM_BLOCK_ELEMENTS must be a multiple of NUM_THREADS");
// Workspace size: num_elements.
size_t const num_grid_elements{
NUM_BLOCK_ELEMENTS * cooperative_groups::this_grid().num_blocks()};
float* const workspace_ptr_1{workspace};
float* const workspace_ptr_2{workspace + num_elements / 2};
size_t remaining_elements{num_elements};

// The first iteration of the reduction.
float* workspace_output_data{workspace_ptr_1};
size_t const num_grid_iterations{
(remaining_elements + num_grid_elements - 1) / num_grid_elements};
for (size_t i{0}; i < num_grid_iterations; ++i)
{
size_t const grid_offset{i * num_grid_elements};
size_t const block_offset{grid_offset +
cooperative_groups::this_grid().block_rank() *
NUM_BLOCK_ELEMENTS};
size_t const num_actual_elements_to_reduce_per_block{
remaining_elements >= block_offset
? min(NUM_BLOCK_ELEMENTS, remaining_elements - block_offset)
: 0};
float const block_sum{thread_block_reduce_sum_v1<NUM_THREADS>(
input_data + block_offset,
num_actual_elements_to_reduce_per_block)};
if (cooperative_groups::this_thread_block().thread_rank() == 0)
{
workspace_output_data
[i * cooperative_groups::this_grid().num_blocks() +
cooperative_groups::this_grid().block_rank()] = block_sum;
}
}
cooperative_groups::this_grid().sync();
remaining_elements =
(remaining_elements + NUM_BLOCK_ELEMENTS - 1) / NUM_BLOCK_ELEMENTS;

// The rest iterations of the reduction.
float* workspace_input_data{workspace_output_data};
workspace_output_data = workspace_ptr_2;
while (remaining_elements > 1)
{
size_t const num_grid_iterations{
(remaining_elements + num_grid_elements - 1) / num_grid_elements};
for (size_t i{0}; i < num_grid_iterations; ++i)
{
size_t const grid_offset{i * num_grid_elements};
size_t const block_offset{
grid_offset + cooperative_groups::this_grid().block_rank() *
NUM_BLOCK_ELEMENTS};
size_t const num_actual_elements_to_reduce_per_block{
remaining_elements >= block_offset
? min(NUM_BLOCK_ELEMENTS, remaining_elements - block_offset)
: 0};
float const block_sum{thread_block_reduce_sum_v1<NUM_THREADS>(
workspace_input_data + block_offset,
num_actual_elements_to_reduce_per_block)};
if (cooperative_groups::this_thread_block().thread_rank() == 0)
{
workspace_output_data
[i * cooperative_groups::this_grid().num_blocks() +
cooperative_groups::this_grid().block_rank()] = block_sum;
}
}
cooperative_groups::this_grid().sync();
remaining_elements =
(remaining_elements + NUM_BLOCK_ELEMENTS - 1) / NUM_BLOCK_ELEMENTS;

// Swap the input and output data.
float* const temp{workspace_input_data};
workspace_input_data = workspace_output_data;
workspace_output_data = temp;
}

// Copy the final result to the output.
workspace_output_data = workspace_input_data;
if (cooperative_groups::this_grid().thread_rank() == 0)
{
*output = workspace_output_data[0];
}
}

template <size_t NUM_THREADS>
void launch_batched_reduce_sum_v1(float* output_data, float const* input_data,
size_t batch_size,
size_t num_elements_per_batch,
cudaStream_t stream)
{
size_t const num_blocks{batch_size};
batched_reduce_sum_v1<NUM_THREADS><<<num_blocks, NUM_THREADS, 0, stream>>>(
output_data, input_data, num_elements_per_batch);
CHECK_LAST_CUDA_ERROR();
}

template <size_t NUM_THREADS>
void launch_batched_reduce_sum_v2(float* output_data, float const* input_data,
size_t batch_size,
size_t num_elements_per_batch,
cudaStream_t stream)
{
size_t const num_blocks{batch_size};
batched_reduce_sum_v2<NUM_THREADS><<<num_blocks, NUM_THREADS, 0, stream>>>(
output_data, input_data, num_elements_per_batch);
CHECK_LAST_CUDA_ERROR();
}

template <size_t NUM_THREADS, size_t NUM_BLOCK_ELEMENTS>
void launch_full_reduce_sum(float* output, float const* input_data,
size_t num_elements, float* workspace,
cudaStream_t stream)
{
// https://docs.nvidia.com/cuda/archive/12.4.1/cuda-c-programming-guide/index.html#grid-synchronization
void const* func{reinterpret_cast<void const*>(
full_reduce_sum<NUM_THREADS, NUM_BLOCK_ELEMENTS>)};
int dev{0};
cudaDeviceProp deviceProp;
CHECK_CUDA_ERROR(cudaGetDeviceProperties(&deviceProp, dev));
dim3 const grid_dim{
static_cast<unsigned int>(deviceProp.multiProcessorCount)};
dim3 const block_dim{NUM_THREADS};

// This will launch a grid that can maximally fill the GPU, on the
// default stream with kernel arguments.
// In practice, it's not always the best.
// void const* func{reinterpret_cast<void const*>(
// full_reduce_sum<NUM_THREADS, NUM_BLOCK_ELEMENTS>)};
// int dev{0};
// dim3 const block_dim{NUM_THREADS};
// int num_blocks_per_sm{0};
// cudaDeviceProp deviceProp;
// cudaGetDeviceProperties(&deviceProp, dev);
// cudaOccupancyMaxActiveBlocksPerMultiprocessor(&num_blocks_per_sm, func,
// NUM_THREADS, 0);
// dim3 const grid_dim{static_cast<unsigned int>(num_blocks_per_sm)};

void* args[]{static_cast<void*>(&output), static_cast<void*>(&input_data),
static_cast<void*>(&num_elements),
static_cast<void*>(&workspace)};
CHECK_CUDA_ERROR(cudaLaunchCooperativeKernel(func, grid_dim, block_dim,
args, 0, stream));
CHECK_LAST_CUDA_ERROR();
}

float profile_full_reduce_sum(
std::function<void(float*, float const*, size_t, float*, cudaStream_t)>
full_reduce_sum_launch_function,
size_t num_elements)
{
cudaStream_t stream;
CHECK_CUDA_ERROR(cudaStreamCreate(&stream));

constexpr float element_value{1.0f};
std::vector<float> input_data(num_elements, element_value);
float output{0.0f};

float* d_input_data;
float* d_workspace;
float* d_output;

CHECK_CUDA_ERROR(cudaMalloc(&d_input_data, num_elements * sizeof(float)));
CHECK_CUDA_ERROR(cudaMalloc(&d_workspace, num_elements * sizeof(float)));
CHECK_CUDA_ERROR(cudaMalloc(&d_output, sizeof(float)));

CHECK_CUDA_ERROR(cudaMemcpy(d_input_data, input_data.data(),
num_elements * sizeof(float),
cudaMemcpyHostToDevice));

full_reduce_sum_launch_function(d_output, d_input_data, num_elements,
d_workspace, stream);
CHECK_CUDA_ERROR(cudaStreamSynchronize(stream));

// Verify the correctness of the kernel.
CHECK_CUDA_ERROR(
cudaMemcpy(&output, d_output, sizeof(float), cudaMemcpyDeviceToHost));
if (output != num_elements * element_value)
{
std::cout << "Expected: " << num_elements * element_value
<< " but got: " << output << std::endl;
throw std::runtime_error("Error: incorrect sum");
}
std::function<void(cudaStream_t)> const bound_function{
std::bind(full_reduce_sum_launch_function, d_output, d_input_data,
num_elements, d_workspace, std::placeholders::_1)};
float const latency{measure_performance<void>(bound_function, stream)};
std::cout << "Latency: " << latency << " ms" << std::endl;

// Compute effective bandwidth.
size_t num_bytes{num_elements * sizeof(float) + sizeof(float)};
float const bandwidth{(num_bytes * 1e-6f) / latency};
std::cout << "Effective Bandwidth: " << bandwidth << " GB/s" << std::endl;

CHECK_CUDA_ERROR(cudaFree(d_input_data));
CHECK_CUDA_ERROR(cudaFree(d_workspace));
CHECK_CUDA_ERROR(cudaFree(d_output));
CHECK_CUDA_ERROR(cudaStreamDestroy(stream));

return latency;
}

float profile_batched_reduce_sum(
std::function<void(float*, float const*, size_t, size_t, cudaStream_t)>
batched_reduce_sum_launch_function,
size_t batch_size, size_t num_elements_per_batch)
{
size_t const num_elements{batch_size * num_elements_per_batch};

cudaStream_t stream;
CHECK_CUDA_ERROR(cudaStreamCreate(&stream));

constexpr float element_value{1.0f};
std::vector<float> input_data(num_elements, element_value);
std::vector<float> output_data(batch_size, 0.0f);

float* d_input_data;
float* d_output_data;

CHECK_CUDA_ERROR(cudaMalloc(&d_input_data, num_elements * sizeof(float)));
CHECK_CUDA_ERROR(cudaMalloc(&d_output_data, batch_size * sizeof(float)));

CHECK_CUDA_ERROR(cudaMemcpy(d_input_data, input_data.data(),
num_elements * sizeof(float),
cudaMemcpyHostToDevice));

batched_reduce_sum_launch_function(d_output_data, d_input_data, batch_size,
num_elements_per_batch, stream);
CHECK_CUDA_ERROR(cudaStreamSynchronize(stream));

// Verify the correctness of the kernel.
CHECK_CUDA_ERROR(cudaMemcpy(output_data.data(), d_output_data,
batch_size * sizeof(float),
cudaMemcpyDeviceToHost));
for (size_t i{0}; i < batch_size; ++i)
{
if (output_data.at(i) != num_elements_per_batch * element_value)
{
std::cout << "Expected: " << num_elements_per_batch * element_value
<< " but got: " << output_data.at(i) << std::endl;
throw std::runtime_error("Error: incorrect sum");
}
}
std::function<void(cudaStream_t)> const bound_function{std::bind(
batched_reduce_sum_launch_function, d_output_data, d_input_data,
batch_size, num_elements_per_batch, std::placeholders::_1)};
float const latency{measure_performance<void>(bound_function, stream)};
std::cout << "Latency: " << latency << " ms" << std::endl;

// Compute effective bandwidth.
size_t num_bytes{num_elements * sizeof(float) + batch_size * sizeof(float)};
float const bandwidth{(num_bytes * 1e-6f) / latency};
std::cout << "Effective Bandwidth: " << bandwidth << " GB/s" << std::endl;

CHECK_CUDA_ERROR(cudaFree(d_input_data));
CHECK_CUDA_ERROR(cudaFree(d_output_data));
CHECK_CUDA_ERROR(cudaStreamDestroy(stream));

return latency;
}

int main()
{
size_t const batch_size{2048};
size_t const num_elements_per_batch{1024 * 256};

constexpr size_t string_width{50U};
std::cout << std_string_centered("", string_width, '~') << std::endl;
std::cout << std_string_centered("NVIDIA GPU Device Info", string_width,
' ')
<< std::endl;
std::cout << std_string_centered("", string_width, '~') << std::endl;

// Query deive name and peak memory bandwidth.
int device_id{0};
cudaGetDevice(&device_id);
cudaDeviceProp device_prop;
cudaGetDeviceProperties(&device_prop, device_id);
std::cout << "Device Name: " << device_prop.name << std::endl;
float const memory_size{static_cast<float>(device_prop.totalGlobalMem) /
(1 << 30)};
std::cout << "Memory Size: " << memory_size << " GB" << std::endl;
float const peak_bandwidth{
static_cast<float>(2.0f * device_prop.memoryClockRate *
(device_prop.memoryBusWidth / 8) / 1.0e6)};
std::cout << "Peak Bandwitdh: " << peak_bandwidth << " GB/s" << std::endl;

std::cout << std_string_centered("", string_width, '~') << std::endl;
std::cout << std_string_centered("Reduce Sum Profiling", string_width, ' ')
<< std::endl;
std::cout << std_string_centered("", string_width, '~') << std::endl;

std::cout << std_string_centered("", string_width, '=') << std::endl;
std::cout << "Batch Size: " << batch_size << std::endl;
std::cout << "Number of Elements Per Batch: " << num_elements_per_batch
<< std::endl;
std::cout << std_string_centered("", string_width, '=') << std::endl;

constexpr size_t NUM_THREADS_PER_BATCH{256};
static_assert(NUM_THREADS_PER_BATCH % 32 == 0,
"NUM_THREADS_PER_BATCH must be a multiple of 32");
static_assert(NUM_THREADS_PER_BATCH <= 1024,
"NUM_THREADS_PER_BATCH must be less than or equal to 1024");

std::cout << "Batched Reduce Sum V1" << std::endl;
float const latency_v1{profile_batched_reduce_sum(
launch_batched_reduce_sum_v1<NUM_THREADS_PER_BATCH>, batch_size,
num_elements_per_batch)};
std::cout << std_string_centered("", string_width, '-') << std::endl;

std::cout << "Batched Reduce Sum V2" << std::endl;
float const latency_v2{profile_batched_reduce_sum(
launch_batched_reduce_sum_v2<NUM_THREADS_PER_BATCH>, batch_size,
num_elements_per_batch)};
std::cout << std_string_centered("", string_width, '-') << std::endl;

std::cout << "Full Reduce Sum" << std::endl;
constexpr size_t NUM_THREADS{256};
constexpr size_t NUM_BLOCK_ELEMENTS{NUM_THREADS * 1024};
float const latency_v3{profile_full_reduce_sum(
launch_full_reduce_sum<NUM_THREADS, NUM_BLOCK_ELEMENTS>,
batch_size * num_elements_per_batch)};
std::cout << std_string_centered("", string_width, '-') << std::endl;
}

To build and run the reduce sum example, please run the following commands.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
$ nvcc reduce_sum_cooperative_groups.cu -o reduce_sum_cooperative_groups
$ ./reduce_sum_cooperative_groups
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
NVIDIA GPU Device Info
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Device Name: NVIDIA GeForce RTX 3090
Memory Size: 23.6694 GB
Peak Bandwitdh: 936.096 GB/s
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Reduce Sum Profiling
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
==================================================
Batch Size: 2048
Number of Elements Per Batch: 262144
==================================================
Batched Reduce Sum V1
Latency: 2.43301 ms
Effective Bandwidth: 882.649 GB/s
--------------------------------------------------
Batched Reduce Sum V2
Latency: 2.43445 ms
Effective Bandwidth: 882.126 GB/s
--------------------------------------------------
Full Reduce Sum
Latency: 2.47788 ms
Effective Bandwidth: 866.663 GB/s
--------------------------------------------------

The performance of the batched reduce sum kernels using cooperative groups is similar to the performance of the batched reduce sum kernels using traditional CUDA programming models.

Large Array Reduce Sum

There could be three approaches to implement a large array reduce sum kernel.

  1. Iteratively reduce the array using multiple batched reduce sum kernel launches.
  2. Iteratively reduce the array using one full reduce sum kernel launch in which the kernel is managed by grid cooperative groups.

Without using cooperative groups, we could only synchronize threads within a thread block, which leads to the first approach. But there are additional kernel launch overhead due to multiple kernel launches.

With cooperative groups, we could synchronize threads across thread blocks, which leads to the second approach. The second approach, however, also has drawbacks comparing to the first approach that in the later stage of reduction the number of grids being actually utilized is much smaller because the reduction problem size becomes smaller, which is a waste of computation resources.

References

Author

Lei Mao

Posted on

08-06-2024

Updated on

08-06-2024

Licensed under


Comments