1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
import ctypes from typing import Optional, List
import numpy as np import tensorrt as trt from cuda import cuda, cudart
try: FileNotFoundError except NameError: FileNotFoundError = IOError
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
def check_cuda_err(err): if isinstance(err, cuda.CUresult): if err != cuda.CUresult.CUDA_SUCCESS: raise RuntimeError("Cuda Error: {}".format(err)) if isinstance(err, cudart.cudaError_t): if err != cudart.cudaError_t.cudaSuccess: raise RuntimeError("Cuda Runtime Error: {}".format(err)) else: raise RuntimeError("Unknown error type: {}".format(err))
def cuda_call(call): err, res = call[0], call[1:] check_cuda_err(err) if len(res) == 1: res = res[0] return res
def GiB(val): return val * 1 << 30
class HostDeviceMem: """Pair of host and device memory, where the host memory is wrapped in a numpy array"""
def __init__(self, size: int, dtype: np.dtype, name: Optional[str] = None, shape: Optional[trt.Dims] = None, format: Optional[trt.TensorFormat] = None): nbytes = size * dtype.itemsize host_mem = cuda_call(cudart.cudaMallocHost(nbytes)) pointer_type = ctypes.POINTER(np.ctypeslib.as_ctypes_type(dtype))
self._host = np.ctypeslib.as_array(ctypes.cast(host_mem, pointer_type), (size, )) self._device = cuda_call(cudart.cudaMalloc(nbytes)) self._nbytes = nbytes self._name = name self._shape = shape self._format = format self._dtype = dtype
@property def host(self) -> np.ndarray: return self._host
@host.setter def host(self, arr: np.ndarray): if arr.size > self.host.size: raise ValueError( f"Tried to fit an array of size {arr.size} into host memory of size {self.host.size}" ) np.copyto(self.host[:arr.size], arr.flat, casting='safe')
@property def device(self) -> int: return self._device
@property def nbytes(self) -> int: return self._nbytes
@property def name(self) -> Optional[str]: return self._name
@property def shape(self) -> Optional[trt.Dims]: return self._shape
@property def format(self) -> Optional[trt.TensorFormat]: return self._format
@property def dtype(self) -> np.dtype: return self._dtype
def __str__(self): return f"Host:\n{self.host}\nDevice:\n{self.device}\nSize:\n{self.nbytes}\n"
def __repr__(self): return self.__str__()
def free(self): cuda_call(cudart.cudaFree(self.device)) cuda_call(cudart.cudaFreeHost(self.host.ctypes.data))
def allocate_buffers(engine: trt.ICudaEngine, profile_idx: Optional[int] = None): inputs = [] outputs = [] bindings = [] stream = cuda_call(cudart.cudaStreamCreate()) tensor_names = [ engine.get_tensor_name(i) for i in range(engine.num_io_tensors) ] for binding in tensor_names: format = engine.get_tensor_format(binding) shape = engine.get_tensor_shape( binding ) if profile_idx is None else engine.get_tensor_profile_shape( binding, profile_idx)[-1] shape_valid = np.all([s >= 0 for s in shape]) if not shape_valid and profile_idx is None: raise ValueError(f"Binding {binding} has dynamic shape, " +\ "but no profile was specified.") size = trt.volume(shape) if engine.has_implicit_batch_dimension: size *= engine.max_batch_size dtype = np.dtype(trt.nptype(engine.get_tensor_dtype(binding)))
bindingMemory = HostDeviceMem(size, dtype, name=binding, shape=shape, format=format)
bindings.append(int(bindingMemory.device))
if engine.get_tensor_mode(binding) == trt.TensorIOMode.INPUT: inputs.append(bindingMemory) else: outputs.append(bindingMemory) return inputs, outputs, bindings, stream
def free_buffers(inputs: List[HostDeviceMem], outputs: List[HostDeviceMem], stream: cudart.cudaStream_t): for mem in inputs + outputs: mem.free() cuda_call(cudart.cudaStreamDestroy(stream))
def memcpy_host_to_device(device_ptr: int, host_arr: np.ndarray): nbytes = host_arr.size * host_arr.itemsize cuda_call( cudart.cudaMemcpy(device_ptr, host_arr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyHostToDevice))
def memcpy_device_to_host(host_arr: np.ndarray, device_ptr: int): nbytes = host_arr.size * host_arr.itemsize cuda_call( cudart.cudaMemcpy(host_arr, device_ptr, nbytes, cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost))
def _do_inference_base(inputs, outputs, stream, execute_async): kind = cudart.cudaMemcpyKind.cudaMemcpyHostToDevice [ cuda_call( cudart.cudaMemcpyAsync(inp.device, inp.host, inp.nbytes, kind, stream)) for inp in inputs ] execute_async() kind = cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost [ cuda_call( cudart.cudaMemcpyAsync(out.host, out.device, out.nbytes, kind, stream)) for out in outputs ] cuda_call(cudart.cudaStreamSynchronize(stream)) return [out.host for out in outputs]
def do_inference(context, bindings, inputs, outputs, stream, batch_size=1):
def execute_async(): context.execute_async(batch_size=batch_size, bindings=bindings, stream_handle=stream)
return _do_inference_base(inputs, outputs, stream, execute_async)
def do_inference_v2(context, bindings, inputs, outputs, stream):
def execute_async(): context.execute_async_v2(bindings=bindings, stream_handle=stream)
return _do_inference_base(inputs, outputs, stream, execute_async)
|